编辑推荐
(1)一切以代码说话:本书的一切原理都有相应的代码实现。一时不能理解的原理,可以通过实践慢慢体会,能够让程序员以较低的成本迅速入门。 (2)从现象到本质:世界上除了这两种主流框架之外,还有微软的cntk、亚马逊的mxnet、百度的paddlepaddle等。其实本质上它们都趋同的,有了本书学习的基础,寄希读者可以更高维度地思考框架背后的设计理念,有所取舍,而不沦为其奴仆。 (3)5-4-6 速成法:深度学习用到的数学知识很多,概念也很多,学习曲线很陡。但是,笔者还是从中抓住了一条主线——计算图模型。基于计算图模型,总结出了5-4-6 速成法,通过5 步,使用4 种基本元素,组合6 种基本网络结构,就能够写出功能非常强大的深度学习程序。 (4)超越深度学习:本书还讲解了深度学习的两个重要应用:如何自动调参和深度学习引发的强化学习。可以看到,编程变得越来越简单,但是系统变得越来越复杂。我们一方面要时刻关注它们的进展,另一方面手工写神经网络的基本功还不能丢。 (5)赠送资源丰富:本书配套的源代码 100分钟配套学习视频 相关技术延伸阅读。 内容简介
《TensorFlow PyTorch深度学习从算法到实战》详尽介绍深度学习相关的基本原理与使用TensorFlow、PyTorch两大主流框架的开发基础知识和基本技术,并且展示了在图像识别与文本生成实际问题中的应用方法。同时考虑到程序员擅长JavaScript 的人员比熟悉Python 的人员更多的情况,特别增加了对于TensorFlow.js 的介绍。初学者面对深度学习望而却步的主要原因是认为入门门槛太高,需要较多的算法基础训练。针对此问题,本书原创了5-4-6 学习模型提纲挈领地降低学习曲线,并通过将知识点和难点分散到代码中的方式让读者以熟悉的方式迅速入门,并且为进一步学习打下坚实的基础。同时,本书也介绍了AutoML和深度强化学习等新技术,帮助读者开阔眼界。 《TensorFlow PyTorch深度学习从算法到实战》内容翔实,讲解深入浅出,通俗易懂,配有大量的程序案例可供实操学习,既适合职场中经验丰富的开发人员学习,又可供计算机等相关专业的在校学生和其他科技人员参考,还可供算法理论相关的研究人员参考。 作者简介
刘子瑛,毕业于清华大学软件学院。曾在高通、摩托罗拉等公司长期从事移动技术开发工作,现在阿里巴巴集团阿里云智能事业群从事智能互联网汽车等相关研发工作。 目录
绪论程序员为什么要学习机器学习 0.1工业革命级的技术红利 0.2中美两国为机器学习作背书 0.3从编程思维向数据思维的进化 第1章30分钟环境搭建速成 1.1使用Anaconda搭建开发环境 1.2使用Python自带的开发环境 1.3从源代码搭建开发环境 第2章深度学习5-4-6速成法 2.1计算图模型与计算框架 2.2五步法构造基本模型 2.3案例教程 2.45-4-6速成法学习PyTorch 2.55-4-6速成法学习TensorFlow 2.6在TensorFlow中使用Keras 2.7本章小结 第3章张量与计算图 3.10维张量:标量 3.2计算图与流程控制 3.3变量 第4章向量与矩阵 4.11维张量:向量 4.22维张量:矩阵 4.3n维:张量 第5章高级矩阵编程 5.1范数及其实现 5.2迹运算 5.3矩阵分解 第6章优化方法 6.1梯度下降的基本原理 6.2高维条件下的梯度下降 6.3PyTorch和TensorFlow中的梯度计算 6.4梯度下降案例教程 6.5优化方法进阶 第7章深度学习基础 7.1从回归到分类 7.2深度学习简史 第8章基础网络结构:卷积网络 8.1卷积的原理与计算 8.2池化层 8.3激活函数 8.4AlexNet 第9章卷积网络图像处理进阶 9.1小卷积核改进VGGNet 9.2GoogLeNet 9.3残差网络 9.4目标检测 9.5人脸识别 第10章基础网络结构:循环神经网络 10.1循环神经网络原理 10.2实用循环神经网络:LSTM 10.3LSTM案例教程 10.4实用循环神经网络:GRU 10.5双向循环神经网络 10.6将隐藏状态串联起来 第11章RNN在自然语言处理中的应用 11.1文本编码:从独热编码到词向量 11.2Char-RNN算法 11.3Char-RNN的训练 11.4Char-RNN的预测推理 11.5Char-RNN完整模型 第12章用JavaScript进行TensorFlow编程 12.1TensorFlow.js的简介和安装 12.2TensorFlow.js的张量操作 12.3TensorFlow.js的常用运算 12.4激活函数 12.5TensorFlow.js变量 12.6TensorFlow.js神经网络编程 12.7TensorFlow.js实现完整模型 12.8TensorFlow.js的后端接口 第13章高级编程 13.1GPU加速 13.2生成对抗网络 13.3Attention机制 13.4多任务学习 第14章超越深度学习 14.1自动机器学习AutoML 14.2Autokeras 14.3WindowsSubsystemforLinux 14.4强化学习 14.5强化学习编程 14.6下一步的学习方法
|