我的购物车 | 我的帐户 | 我的暂存架 | 代查代找 | 联系我们
首页 图书 影视 音乐 期刊 百货
facebook
人物传记 | 中医养生 | 社会小说 | 成功励志 | 中国现当代随笔 | 外国经典小说 | 樊登推荐 | 张爱玲全集 | amazon畅销书—小说 | 理想国译丛 | 南怀瑾全集 | 图书精彩专题 | 著名作家
您现在的位置:首页 - 图书 - 计算机/网络 - 计算机网络_人工智能 机器学习
图书排行榜


暂无大图
深度学习与MindSpore实践
市场价:¥79.00
会员价:$39.42  VIP价:$37.45
作者:陈雷
出版社:清华大学出版社
出版日期:2020年3月    ISBN:9787302546610
版次: 版    印次:
开本:128开    页数:     装帧:平装-胶订
商品所属分类:图书 - 计算机/网络 - 计算机网络_人工智能 机器学习
会员促销价: $37.45 (5% Off)   VIP促销价:$35.58 (10% Off)
7-10个工作日从新泽西发货,免运费,满$39免$3.99包装处理费。了解详情    
预订价: $32.39 (18% Off)
9-12个工作日从新泽西发货,每笔订单不论金额多少,免包装处理费,只收取$6.99运费。此订购适合机构(如图书馆、中文学校等)或者一次性购买较多的顾客。了解详情    
  

商品简介  
编辑推荐

MindSpore是华为公司开发的深度学习框架,兼容目前主流的深度学习框架,支持端/边/云全场景全栈协同开发。本书由陈雷教授倾力编著,陈雷教授是香港科技大学计算机科学与工程系教授,大数据研究所主任,IEEE Fellow和ACM杰出科学家。《深度学习与MindSpore实践》系统介绍了深度学习的基础理论、常用的深度神经算法设计,并以大量基于MindSpore的实例帮助读者掌握深度学习算法的实现。此外,本书还对深度学习中的样本数据处理、可视化及端云协同进行了深入的探讨,因此我相信本书适合广大读者作为深度学习技术的入门读物。


内容简介

本书系统介绍了深度学习理论,并基于MindSpore AI计算框架进行实践。全书共分十四章,内容涵盖了深度学习概况、理论基础、深度神经网络、卷积神经网络、无监督学习、深度强化学习、自动化机器学习、端云联合训练、可视化、数据准备等内容。为便于读者学习,书中还给出了基于MindSpore实现的关于深度学习的开发实例以及线上资源。本书可以作为普通高等学校人工智能、智能科学与技术、计算机科学与技术、电子信息工程、自动化等专业的本科生及研究生教材,也适合作为从事深度学习相关工作的软件开发工程师与科研人员的学习、参考用书。


作者简介

陈雷:香港科技大学计算机科学与工程系教授,大数据研究所主任,IEEE Fellow和ACM杰出科学家。研究方向包括数据驱动AI、人力机器学习、知识图谱、社交媒体上的数据挖掘等。在国际著名期刊和会议上发表300余篇论文,曾获得2015年SIGMOD时间测试奖。现任VLDB 2019程序委员会联合主席、VLDB期刊主编、IEEE TKDE期刊副总编辑、VLDB Endowment执行成员。


目录

第1章引言00

1.1人工智能的历史变迁00

1.2什么是深度学习00

1.3深度学习的现实应用00

1.3.1自动语音识别00

1.3.2图像识别00

1.3.3自然语言处理00

1.3.4其他领域00

1.4本书的组织架构00

1.5MindSpore简介00

1.5.1编程简单00

1.5.2端云协同0

1.5.3调试轻松0

1.5.4性能卓越0

1.5.5开源开放0

第2章深度学习基础知识0

2.1回归问题算法0

2.2梯度下降算法0

2.3分类问题算法0

2.4过拟合与欠拟合0

第3章深度神经网络0

3.1前向网络0

3.2反向传播0

3.3泛化能力0

3.4用MindSpore实现简单神经网络0

3.4.1各层参数说明0

3.4.2详细步骤0

目录

第4章深度神经网络的训练0

4.1深度学习系统面临的主要挑战0

4.1.1大数据集需求0

4.1.2硬件需求0

4.1.3过拟合0

4.1.4超参数优化0

4.1.5不透明性0

4.1.6缺少灵活性0

4.2正则化0

4.2.1L2范数正则化0

4.2.2L1范数正则化0

4.3Dropout0

4.4自适应学习率0

4.4.1AdaGrad0

4.4.2RMSProp0

4.4.3Adam0

4.5批标准化0

4.6用MindSpore 实现深度神经网络0

4.6.1各层参数说明0

4.6.2详细步骤0

第5章卷积神经网络0

5.1卷积操作0

5.2池化0

5.3残差网络0

5.4应用:图片分类0

5.5用MindSpore实现基于卷积神经网络图片分类0

5.5.1加载MindSpore模块0

5.5.2定义ResNet网络结构0

5.5.3设置超参数0

5.5.4导入数据集0

5.5.5训练模型0

第6章循环神经网络0

6.1循环神经网络概述0

6.2深度循环神经网络0

6.3长期依赖的挑战0

6.4长短期记忆网络和门控循环神经网络0

6.4.1长短期记忆网络0

6.4.2门控循环神经网络0

6.5应用:文本预测0

6.6用MindSpore实现基于长短期记忆网络的文本预测0

6.6.1加载MindSpore模块0

6.6.2数据准备0

6.6.3定义网络0

6.6.4参数介绍0

6.6.5训练模型0

参考文献0

第7章无监督学习: 词向量0

7.1Word2Vec0

7.1.1提出背景0

7.1.2发展现状0

7.1.3技术原理0

7.1.4技术难点0

7.1.5应用场景0

7.1.6框架模块0

7.2GloVe0

7.2.1提出背景0

7.2.2发展现状0

7.2.3技术原理0

7.2.4技术难点0

7.2.5应用场景

7.2.6框架模块

7.3Transformer

7.3.1提出背景

7.3.2发展现状

7.3.3技术原理

7.3.4技术难点

7.3.5应用场景

7.3.6框架模块

7.4BERT

7.4.1提出背景

7.4.2发展现状

7.4.3技术原理

7.4.4技术难点

7.4.5应用场景

7.4.6框架模块

7.5词向量典型生成算法对比

7.6应用:自动问答

7.6.1自动问答的相关概念

7.6.2传统的自动问答方法

7.6.3基于深度学习的自动问答方法

7.7用MindSpore 实现基于BERT的自动问答

7.7.1数据集准备

7.7.2训练BERT网络

参考文献

第8章无监督学习: 图向量

8.1图向量简介

8.2DeepWalk算法

8.2.1DeepWalk算法原理

8.2.2DeepWalk算法实现

8.3LINE算法

8.3.1LINE算法原理

8.3.2LINE算法实现

8.4Node2Vec算法

8.4.1Node2Vec算法原理

8.4.2Node2Vec算法实现

8.5GCN算法

8.5.1GCN算法原理

8.5.2GCN算法实现

8.6GAT算法

8.6.1GAT算法原理

8.6.2GAT算法实现

8.7应用:推荐系统

8.7.1工业界中的推荐系统

8.7.2推荐系统中的图神经网络模型

参考文献

第9章无监督学习: 深度生成模型

9.1变分自编码器

9.1.1提出背景

9.1.2发展现状

9.1.3技术原理

9.1.4技术难点

9.1.5应用场景

9.2生成对抗网络

9.2.1提出背景

9.2.2发展现状

9.2.3技术原理

9.2.4技术难点

9.2.5应用场景

9.2.6框架模块

9.3应用:数据增强

9.3.1数据增强的定义

9.3.2数据增强的目的

9.3.3传统数据增强的方法

9.3.4基于深度学习的数据增强方法

9.4用MindSpore实现基于生成对抗网络的数据增强

参考文献

第10章深度强化学习

10.1强化学习基本概念

10.1.1基础概念与理论

10.1.2马尔可夫决策过程

10.1.3贝尔曼方程

10.2基本求解方法

10.2.1动态规划法

10.2.2蒙特卡罗法

10.2.3时间差分法

10.3深度强化学习算法

10.3.1DQN算法

10.3.2DDPG算法

10.3.3A3C算法

10.4最新应用

10.4.1推荐系统

10.4.2博弈游戏

10.5用MindSpore实现基于DQN的博弈游戏

参考文献

第11章自动化机器学习

11.1AutoML框架

11.1.1NAS算法

11.1.2超参调优

11.2现有AutoML系统介绍

11.2.1AutoWeka/AutoSklearn/HyperOpt

11.2.2Microsoft NNI

11.3元学习

11.3.1学习优化器

11.3.2学习参数初始化

11.3.3学习损失函数

11.3.4学习度量

11.4用MindSpore实现AutoML

参考文献

第12章端云协同

12.1端侧推理

12.2端云迁移学习

12.3端云联邦学习

12.3.1联邦平均

12.3.2梯度压缩

12.4端云协同框架

参考文献

第13章深度学习可视化

13.1深度学习可视化概述

13.1.1数据分析

13.1.2模型建立与理解

13.1.3训练

13.1.4评估

13.2MindSpore可视化实践

13.2.1可视化流程

13.2.2数据集可视化

13.2.3模型与训练可视化

13.2.4Summary汇总数据格式

参考文献

第14章深度学习的数据准备

14.1数据格式概述

14.2深度学习中的数据格式

14.2.1原始输入

14.2.2标注信息

14.3常用的深度学习数据格式

14.3.1TFRecord格式

14.3.2LMDB存储

14.3.3Rec格式

14.3.4MindSpore数据格式

14.3.5MindSpore数据集

14.4使用MindSpore数据格式进行训练数据准备

14.4.1MindSpore数据格式生成

14.4.2MindSpore数据格式统计与检索

14.4.3MindSpore数据格式训练数据读取

附录A中、英文对照词汇表

附录BMindSpore白皮书

参考文献


购买该商品的会员还购买过以下商品  
暂无购买信息!

相似商品  
图解人工智能 畅销书《图解机器学习》同系列作品,334张图解轻松入门,俯瞰技术全景,专业实用,图解版人工智能开发通识入门书,一本书全面了解人工智能开发基础知识!
图解人工智能畅销书《
超简单的机器学习——人气讲师为你讲解AI在工作中的应用 人气讲师来也,专治学不会!丰富案例,通俗讲解,轻松讲解,解析机器学习的商业应用看我就对了!
超简单的机器学习——
深度学习导论 精装版
深度学习导论精装版
Python大数据与机器学习实战
Python大数据与机器学
人工智能(AI)应用从入门到精通
人工智能(AI)应用从
Kaldi语音识别实战
Kaldi语音识别实战
手把手构建人工智能产品:产品经理的AI实操手册
手把手构建人工智能产
机器学习开发者指南
机器学习开发者指南
深度学习与目标检测
深度学习与目标检测
机器人流程自动化(RPA)UiBot开发者认证教程(上下册)
机器人流程自动化(RP
国之重器出版工程 视频中人的动作分析与识别
国之重器出版工程视频
零基础入门Python深度学习
零基础入门Python深度

战略合作伙伴: 中图在线 中国图书对外推广网 中国出版集团公司 外语教学与研究出版社 壹嘉出版
  首次购物
·如何注册
·如何购买
·如何找到商品
·安全说明

  付款方式
·支票付款
·信用卡付款
·现金帐户余额付款
·优惠券帐户余额付款

  配送问题
·送货方式
·订单运输情况查询
·配送时间及费用
·全球配送

  我的账户
·查看订单
·暂存商品
·优惠券帐户
·现金账户

  售后服务
·退货服务
·换货服务
·缺货商品处理
·产品小知识

  联系方式
·联系我们
·关于我们
Copyright 2003-2024 Timesbook.com Inc.